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ABSTRACT

One of the major challenges in mechanics is to predict danageks and fragmentation patterns. Besides the high désramthe modeling
side, the complicated structure and non-regular beha¥iorazks turn numerical simulations of these problems indliffecult task. A promising
tool to overcome such difficulties are phase-field methoti® fain idea behind it is to mark the material’s differentegaorphasesby continuous
order parameter fields, and to let them evolve in space arel tBince the physical properties within the phases are all igiven, the evolving
structure is fully described by the position and motion af ghase interfaces. However, an order parametephase-field is by definition a
continuous field and thus, the moving boundaries are 'srdeaver a small but finite length, i.e., phase-field modelsstitute so-called diffuse-
interface formulations, see Fig. 1.

Originally derived for diffusion problems, phase-field netglare meanwhile used for a variety of interface problekesdecomposition, phase
transformations or aging of a microstructure. The core efgwnodel is a Landau free energy functional. For two phasdsvath phase-field
s(x,t) it states the potential energy of a boflyc R®
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whereW*o(s) denotes a configurational energy density which controlsidemmposition of the phases a#§""(Os) is the interfacial or surface
free energy density. Additional fields may contribute tophase evolution but are omitted here for brevity.

Phase-field models of fracture have gained attention omlgntty. Here, the phase-field indicates the state of themahtehich may be solid
(s=1) or, if cracked, emptyg= 0). The fields(x,t) is controlled by an additional differential equation whiesults in a coupled field problem but
completely avoids the resolution of discontinuities.

For purpose of illustration let us consider a deformingdsatith domain3 c R3 and boundarnd® = I' ¢ R2. Crack growth corresponds to
the creation of new boundari€st). Hence the total potential energy of a homogenous but argdalid is composed of its bulk energy with free
Helmholtz energy densit® and of surface energy contributions from growing crack lntauies.
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The fracture-energy density; quantifies the material’'s resistance to cracking, forlerftcture it corresponds to Griffith’s critical energyeate
rate. However, the energy functional (2) cannot be optichinegeneral and even an incremental approach is challermgnguse of the moving
boundaried (t). Highly sophisticated discretization techniques havenbdeveloped to solve such problems, e.g. cohesive zone mdtiel
extended finite element method, eroded finite elements entlycdeveloped eigenfracture strategies. In a phasedigitdoach to fracture the set
of evolving crack boundaries is instead replaced by a sexfnsity functionay(t) = y(s(x,t)) and an approximation of the form
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which allows to re-write the total potential energy of a &iag solid and to formulate the optimization problem logall
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In potential (4) the material’s energy is again composedaaf terms, a bulk energy density®"k and a surface energy contributigfey. By
definitiony is only different from zero along cracks.

phase-field

:‘-’ 05 u‘: 07
horizontal cut

Figure 1: The phase-field shows a crack in a 3-point bendistg @n the right, the with of the crack zone for different ldngcale parametetgis
illustrated by the decay of phase-field paramstierthe converged state.



Optimization of the potentials (1) or (4) leads to evolutiequations for the phase-fieix,t). For a simple ordering type of phase-field,
the variation of energy leads the wanted driving forge; —c3sE. Herein and belove,cy,cy,...,c4s € RT denote unspecified constants. The
corresponding Euler-Lagrange equation is typically namieh-Cahn equation and has the form of a simple reactiffagion equation.

$=c10(S) +CrAAs (5)

In this formulationg(s) denotes the reaction term, eqfs) = 2s° —s. If the phase-field variable is a conserved quantity likesamcentration or
volume fraction, its evolution has additionally to accofortthe continuity equation which leads to an evolution eumaof Cahn-Hilliard type.

$=C3AQ(S) — C4AAS (6)

Obviously, there is no general phase-field evolution equatiut instead the specific formulation has to map the physittse underlying problem.
In this contribution we apply different phase-field modesimulate damage in solids of linear-elastic and non-finegterials.

Continuum mechanics

A material point of a solid in its reference configurati®g is labeled byX = (X17X27X3)T and deforms during a time intervi0,t] with a
mapping

X(X,1) 1 B x [0, = R". M
We denotex = x(X,t) with the gradient of the deformatidh: By x [0,t] — R™",
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The elastic boundary value problem follows from the balasfdenear momentum,

x -P+B=pov  inByx 0], )

whereP is the first Piola-Kirchhoff stress tensqg denotes the mass densByT the prescribed body force and traction, arttle material velocity.
The boundary of the solid is subdivided into displacemeuditteaction boundarie83j, dBS with 0By = 0B85 UOBg, B§ NIB7 = 0 and

X=X ondBY x[0,f] and PN=T ondzS. (10)

The initial conditions are
X(X,0)=x9 and v(X,0)=vy in Bp. (11)

Let WPUK(F T s,...) be the local energy density of the bulk material. There magdutitional dependencies 81k, e.g. on other phase-fields
or on internal variables, but we will restrict ourselvesehtr an isotropic non-linear elastic material with one or piases. This material will
develop damage and/or cracks. From physics we know thatifeaequires a local state of tension whereas the compegssit of the deformation
does not contribute to crack growth. This requires a splihefbulk energy into compressive and tensional parts, cfi;[2].

Phase-field evolution

The evolution equations for both, conservative and norseomtive phase-fields may be re-stated in a general form
$=—MY(x,s), (12)

whereM denotes a kinematic mobility [1/sec] aMdx,s) summarizes all (dimensionless) driving forces which tgfiicrepresent a competition of
bulk and surface forces, cf., e.g. [1; 9].

In phase-field fracture such a driving force results fromease of stored elastic energy of the body into the formaifdree surfaces. Typically
it is derived from an energy potential and we reformulateptal (4) as

E= @(@eﬂcy)dv with e — ¥ (13)
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For normalization we introduce here a potentfaivhich summarizes elastic and fracture energy contribatigh= W€ + Iy, and a characteristic
lengthlc which corresponds to half of the diffuse 'crack width’, ifae transition zone between intact and broken material. stiniace-density
functionaly may be understood as a wavenumber of the moving disturbamteracterizes the shape of the diffuse zone. By definifiamctiony
has a small support and is symmetric to the real’ crack pathyeneral it is defined as a function of the phase-field patarmseolely,y = 1/I.f(s).
Then, an ansatz of the form

f(s) = co|l1— % + 112|082 + col ¢ Asf? + 3l 8| 38 + .. (14)

can be made. Inserting it into (3) and minimizing the coroesjing potential (13) analytically, leads for the simplasiaxial case to an exponential
solution of the forms=1—exp(—|x|/Ic). Now we determine the constartg c1,Cp,C3,... in such a way, that this disturbance is approximated
properly. In consequence we obtain for the surface-defigitytion a second order approximation of the form

y= % ((1—s)z+|§(us)2). (15)
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Figure 2: Model with loading conditions and computed phiéele-distribution for mode |, mode Il and mode Il fracture.

The consideration of higher order terms gives an overalticoous analytical solution. Approximating the corresgiowy disturbances=1—
exp(—|x|/I¢) - (14 |x|/I¢). the fourth order crack-density functional reads

y= % ((1—5)2+2I§(Ds)2+I§(As)2) . (16)

Note that an approximation (14) with the first term only déses a sharp transition and would result in the typical diffies of moving discontinu-
ities. The gradient terrfs)? regularizes the crack zone and renders the method non-IBiealadditional Laplacian in (16) affects the curvature of
the diffuse interface approximation and smoothes theitiansWe would like to emphasize that gradient terms areaknfrom continuum damage
mechanics. However, in opposite to a damage variable hemadlterial’s state is well defined only for phase-field patenge= 1 (intact) ands=0
(broken). The transition zone is a consequence of the regethmodel and an intermediate value:® < 1 state has no physical meaning.

In a variational approach the driving force of equation ($2Jerived from the potential energy of the cracked body (4)smnormalized energy
density in (13), i.e.,

Y = 8sW = 8 (W + Icy) = Y&+ 1c3ey 17)

whereY® summarizes the normalized crack driving force aglily represents a kinematic fracture resistance. It evolveshi®rsecond order
crack-density approximation (15) and for the fourth ordaick-density approximation (16) to

ldey=—(1—9)—12As  and  Idsy= f:—ZL(lfs) —12As— %IéAAs, (18)
respectively. The dependence of the elastic energy @?(ﬁ,T,s) on the phase-field can be modeled in different ways. In the simplest case, a
linear-elastic bulk energy, i.&§ = %s : Ce with normalized elasticity tensd® = I/ G C(T), is multiplied with a degradation function,

e — a(s) H_JS. (19)

This functiong(s) is such that in regions where the material is brokes: Q), the contribution to the elastic energy is zero, whilehia intact
regions the elastic energy contribution recovers the oasguibed by the material's energy density.

A variational functional with quadratic degradation fuoatwas first introduced by Francfort, Marigo [5] and withgélt modifications this
ansatz has become very popular since, see, e.g., Miehe[@} aihd Borden et al. [3]. Here the local energy function istaf form

Y=8W with @=§@8+%(173)2+|§C|Ds|2, (20)
Cc

which corresponds to (17) with a second order crack-deagipyoximation (15).

A derivation of the driving force from an energy potentiadwever, is not necessary for a phase-field approach to feadtikewise the driving
force can directly be modeled by a classical failure criteriln general, the phase-field fracture approach offersymaw opportunities in fracture
simulations
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