
14th Joint European Thermodynamics Conference 
Budapest, May 21–25, 2017 

 

1 

 

 

 

 

 

GENERAL EXPRESSION OF ENTROPY PRODUCTION BASED ON THERMOMASS THEORY 

 

Bing-Yang Cao1,*, Yuan Dong1, Zeng-Yuan Guo1 

 

1 Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, 

Tsinghua University, Beijing 100084, China 

*corresponding author: caoby@mail.tsinghua.edu.cn (B.Y. Cao) 

 

 

ABSTRACT 

 

The entropy production in the classical irreversible thermodynamics (CIT) is expressed as a bilinear form of generalized (driving) forces and 

conjugated (driven) fluxes, which suffers from the arbitrariness of decomposition of the forces and the fluxes, and the possible negative entropy 

production in non-Fourier heat conduction problems (heat waves). In this paper, we present a general form of entropy production for heat conduction 

based on the thermomass model at first, which is the product of the friction force and the drift velocity of thermomass divided by temperature, and 

holds true for both Fourier and non-Fourier heat conduction. Then the similar generalization of the expression of entropy production for other kinds 

of linear and non-linear transport processes is proved to be applicable. Such general expression for entropy production is consistent with that in 

extended irreversible thermodynamics, where the entropy of a system depends not only on the classical variables, but also on the dissipative fluxes, 

for example, the heat flux in heat conduction problems. 

Key words: entropy production, thermomass model, classical irreversible thermodynamics, extended irreversible thermodynamics, non-linear 

transport processes 

 

1. Introduction 

The establishment of classical irreversible thermodynamics (CIT) can be traced back to 1931, when Onsager postulated the reciprocal relations 

in two of his papers [1]. He wrote the “dissipation-function” with a bilinear form of “forces” and “velocities”. The theory was further developed by 

Prigogine [2, 3], de Groot et al. [4-9] and the “dissipation-function” was clarified to be entropy production, s. The entropy production in CIT is a 

bilinear product of the thermodynamic (generalized) forces, or driving forces X and conjugated fluxes, or driven fluxes J [4, 7] 

s

 



 J X .  (1) 

The CIT assumes a linear relation between the thermodynamic forces and fluxes, so it is also regarded as linear irreversible thermodynamics. 

The CIT has been applied well in many fields. For instance, the reciprocal relations facilitate the analyses on cross effects of various irreversible 

processes, such as thermoelectric and thermophoresis effects; the least dissipation of energy [1] and minimum entropy production principle for 

stationary states [2, 3] based on variational principles can derive the transport equations and be used for thermodynamic optimization of irreversible 

processes [10-12]. 

However, the CIT is still imperfect. For instance, the decomposition of the forces and fluxes in the expression of entropy production is to some 

extent arbitrary [4, 13,14]. For instance, the thermodynamics force in heat conduction processes can be defined as T , lnT or 1T   

in Fourier’s picture, energy picture or entropy picture, respectively [15]. It was realized soon after the establishment of reciprocal relations that the 

ambiguity of selection of these forces and fluxes is harmful for the reciprocity theorem [16]. The physical identification of thermodynamic forces 

and fluxes is highly required and regarded as one of the most fundamental questions about CIT [14, 16]. On the other hand, the linear relations 
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between forces and fluxes do not stand in some cases. The chemical reactions and rheological flows are generally characterized by nonlinear 

constitutive equations [4, 13, 14]. The linear heat conduction law is applicable only in normal practical conditions. When combined with the energy 

conservation relation, the linear Fourier’s law of heat conduction will lead to a parabolic evolution function for state variables, which predicts the 

non-physical infinite propagation speed of thermal perturbation. Great efforts have been made to establish more general laws for irreversible 

processes in extreme conditions. The Cattaneo-Vernotte (CV) model [17-19] (c.f. Eq. (7))for heat conduction containing the relaxation term of heat 

flux can give a hyperbolic evolution function and remove the paradox of infinite propagation speed, and is also applicable to modify the Fick’s law 

[20] and Newton’s viscosity law (i.e. the Maxwell model for viscoelasticity) [21-23]. Since the heat flux is not proportional to the temperature 

gradient or the thermodynamic force, the entropy production is no longer positive semi-definite, which seems to violate the second law of 

thermodynamics [13, 24]. The deviation from linearity undermines the CIT theories. This motivates the development of extended irreversible 

thermodynamics (EIT) [13, 24-39], which introduces fluxes as independent variables and redefines some concepts, such as temperature and entropy. 

The entropy production is defined as a new form in the framework of EIT and keeps positive semi-definite in extreme conditions, such as heat 

transport at high frequencies and short wavelengths. However, the physical meaning of modified generalized forces has not been clarified till now. 

The thermomass (TM) model [40-47] has been developed in recent years to establish a general relation for heat conduction on the basis of the 

first principle. Based on the Einstein's mass-energy equivalence relation, the TM model gives a governing equation for heat conduction covering 

nonlocal and nonlinear effects, which can be ascribed to the inertia of thermomass. This model is also useful to study the unusual transport 

phenomena in nano-scale systems [47]. Comparisons of the TM model with EIT and phonon hydrodynamics have been carried out. It was found 

that the constitutive equation for heat transport by different theories is consistent [35, 44, 45]. The entropy production for hyperbolic heat conduction 

based on the TM model was also derived and found to be analogous with the results in EIT [46]. In the present paper, the physical essences of forces 

and fluxes are further examined in assistance of the TM theory to develop a general expression for entropy production in irreversible transport 

processes, which is applicable in both ordinary and fast transient conditions.  

 

2. Generalized Entropy Production in EIT 

We start from the entropy production for transport processes in CIT 

f e

1

1 1 1
:

N
s v k

k

kT T T T


 



  
          

   
q u J iP ,  (2) 

where q is the heat flux vector, T is the temperature, Pv is the stress tensor, uf is the velocity of fluid, Jk is the diffusion flux, k is the chemical 

potential, i is the current density, and e is the electric potential. Equation (2) characterizes the irreversibility induced by transport of heat, momentum, 

mass fraction and charge and consists of a sum of products of flow quantities (thermodynamic fluxes) and gradients of intensive state variables 

(thermodynamic forces). This expression keeps semi-positive definite as long as the linear transport relations hold 

T  q , (Fourier’s law for heat conduction)  (3a) 

1

N

k kj j

j

D c


  J , (Fick’s law for mass diffusion)  (3b) 

e

e

1

r
  i . (Ohm’s law for electrical conduction)  (3c) 

f2v   uP , (Newton’s law for viscous flow)  (3d) 

where  is the thermal conductivity,  is the viscosity, D is the diffusivity,  is the density, ck is the mass ratio defined by k/, and re is the 
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electric resistance. When co-existing, these processes present cross effects, such as thermoelectric and thermal diffusion. In these cases the linear 

transport relations become 

     
1

1
N

qq qk k qe e

k

L T L T L T 


     q ,   (4a) 

     
1

1
N

k kq kj j ke e

j

L T L T L T 


     J ,  (4b) 

     e

1

1
N

eq ek k ee

k

L T L T L T 


     i .  (4c) 

where L are phenomenological coefficients and required to be symmetric according to Onsager’s reciprocal relation. 

However, the above linear laws have some inherent theoretical defects. For example, in rigid bodies or fluids at rest, when combined with the 

energy conservation relation 

u

t



  


q ,  (5) 

the Fourier’s law of heat conduction leads to a parabolic equation for temperature evolution  

 V

T
C T

t
 


 


.  (6) 

where u is the internal energy density and CV is the specific heat. Though this equation is enough to most engineer applications, it predicts an 

infinite propagation speed of thermal perturbation and profiles temperature evolution incorrectly for fast transient heating problems. To remove this 

defect, the Cattaneo-Vernotte (CV) model [17-19] was proposed as  

CV T
t

 


   


q
q .  (7) 

where CV is the relaxation time in CV model. The relaxation time is generally very small (~10-12 s) for condensed matters. Nevertheless, this 

modification causes new problems, as the deviation from the linear law breaks the semi-positive definitiveness of the classical entropy production, 

CV

2 2

s T T
T

T T t




  
  



q
. (8) 

Equation (7) can be negative because of its second term on the right-hand side, which has been verified by numerical calculations [13, 24] and 

seems to violate the second law of thermodynamics. The EIT theory assumes the heat flux q to be a new state variable, and changes the definition 

of entropy 

CV
eq 2

1

2
s s

T




  q q . (9) 

So, the EIT generalizes the entropy production for heat conduction [13, 25] 

s

EIT 2

1

T



 q q . (10) 

It is always semi-positive definite for the heat waves (as shown in Fig. 1). The modified entropy production is exactly the same as the classical 

expression of Eq. (2) if the Fourier’s law holds. For heat conduction in fluids, Müller et al. [26-28] choose heat flux and stress tensor as independent 

variables, and the transport process agrees with the kinetic theory of gases from a derivation based on Grad’s 13 moment distribution. In this case 
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the entropy production is positive definite with a quadratic form of heat flux and stress tensor. The same analyses can be made for other transport 

processes and the generalized entropy production in EIT to the lowest order of flux becomes 

-1

2
1

1 1 1 1
:

2

N
s v v

k k e

k k k

R
r

T T T M T


  

      q q J J i iP P D ,  (11) 

where D is the diffusion matrix of Fick’s law in Eq. (3c), R is the gas constant, and Mk is the molecular mass of species k. This expression keeps 

semi-positive in short wave length or high frequency phenomena since it has a quadratic structure. Taking the similar decomposition as in CIT, it is 

noticed that the thermodynamic forces are no longer the gradient of intensive state variables but proportional to the flow quantities. Therefore, the 

thermodynamic forces in EIT cannot be regarded as driving forces. This difference has been discussed by Llebot et al. [13, 25] for thermoelectric 

effect, and the definitions in EIT were revealed to be closer to Onsager’s original proof of reciprocal relations. However, the decomposition and 

physical meaning of thermodynamic forces and fluxes in the generalized entropy production are not clarified. 

 

Fig 1: The evolutions of the classical equilibrium entropy SCIT and the extended entropy SEIT in an adiabatic system 

3. TM Model Based General Entropy Production for Heat Transport  

3.1 Thermomass model 

According to the Einstein's mass-energy equivalence relation, the thermal energy divided by the square of light speed in vacuum, is part of the 

“proper mass” of a system. That means “a piece of iron weighs more when red-hot than when cool” [48,49]. From this point of view, the mass 

increase of a condensed matter, mh, due to thermal vibrations is 

h 2

VmC T
m

c
 ,  (12) 

where m is the mass of a body, CV represents the specific heat capacity at constant volume, and c is the speed of light in vacuum. Thus the 

density of the thermomass h with a unit of kg·m-3 is 

h 2

VC T

c


  . (13) 

The drift velocity of the thermomass, uh, can be extracted from the heat flux 

h

VC T


q
u . (14) 

The governing equations of heat conduction have been obtained in analogy with porous hydrodynamics 

S

t

 Classical Entropy

 Extended Entropy
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 h
h h 0

t





 


u , (15) 

 h
h h h h h hp

t
 


   



u
u u f , (16) 

where the first and second terms in Eq. (16) represent the inertia effect, fh is the friction force, and ph is the pressure of thermomass. The thermal 

pressure can be derived from the Debye state equation for dielectric solids 

 
2

h h 2

V

V

C T
p C T

c


  , (17) 

where  is the Grüneisen parameter. Equation (15) gives the thermomass (energy) conservation relation when Eqs. (13) and (14) are substituted 

into it. Equation (16) represents the governing equation for heat transport. For bulk materials, the heat conduction process is analogous with the 

fluid flow in porous media wherein the friction force is proportional to the flow rate 

h h h f u . (18) 

The momentum equation (16) will reduce to the Fourier’s conduction law in conditions with negligible inertia of thermomass, which means a 

balance between the driving and friction forces 

h hp  f , (19) 

Inserting Eq. (17) into Eq. (19) and comparing with the Fourier’s law, the friction coefficient  can be determined as 

22 VC T



 . (20) 

where  is the thermal conductivity. Thus, the general heat conduction equation can be written as 

TM 2 0b T T
t x

  
 

       
 

q q
l q , (21) 

with 

TM 22 VC T





 , (22a) 

 
h TM2

2 V VC C T




 
 

q
l u , (22b) 

2
2

h2 3 32 V

q
b Ma

C T
  , (22c) 

where τTM is the lagging time between the temperature gradient and the heat flux; l is the characteristic length of heat conduction [47], which is 

a measure of the spatial inertia effects, i.e. the steady state non-Fourier heat conduction occurs and the boundary slip should be considered at the 

scale; Mah is the thermal Mach number defined as the ratio of the drift velocity, uh, to the thermal wave speed in the phonon gas, uhs. The first three 

terms on the left-hand side of Eq. (21) come from the inertia effects. The fourth term represents the effect of the pressure gradient (driving force), 

and the last term is proportional to the resistance force. Equation (21) reduces to the CV model when the second and third inertia terms are neglected, 

which profiles the heat waves for fast transient perturbation. The third inertia term implies that the effective thermal conductivity will reduce when 
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the heat flux is high enough, which agrees with the experimental results for nanotubes and nanowires when considering slip boundary conditions 

[47]. Cimmelli et al. [35] obtained a similar equation to Eq. (21) based on the concept of dynamical non-equilibrium temperature, and the non-local 

effect could be obtained by a nonlinear solution of the phonon Boltzmann equation, which is consistent with the theory of phonon hydrodynamics 

[45]. The above mentioned thermomass theory is limited to the conduction in rest rigid bodies. When dealing with heat conduction in fluids or 

moving media, more terms are supposed to contribute to the time derivative of heat flux. Christov and Jordan [50] proposed a material derivative 

to remove the paradox in second sound propagation in moving rigid media in an inertia frame. More generally, Müller and Ruggeri [26] established 

constitutive equations for heat and momentum transfer in fluids in a non-inertia frame by extended thermodynamics and kinetic theory. The time 

derivative of heat flux consists of two additional terms,   2i i k i k k ikq t q q v x q W       , where v is the fluid velocity and W is the angular 

velocity matrix. The first additional term  k i kq v x   is from the requirement of objectivity, the so-called Jaumann derivatives. The second 

additional term -2qkWik can be rewritten as -2c2(huh)kWik with Eqs. (13)-(14) and regarded as a Coriolis inertia term due to the effects in a non-

inertia frame. 

3.2. General Expression of Entropy Production in Heat Transport 

The expression of entropy production in the heat transport process can be established based on the TM model. Since it aims to evaluate the 

dissipation in the system, the TM model expresses entropy production as a product of friction force and velocity just as the viscous dissipation in 

hydrodynamics [46] 

s

TM h h 2

1 1

T T



    F u q q , (23) 

with 

h h h2

2V V
C C T

c

 




 
    

 

q
F f f . (24) 

The dimensionless coefficient  relating Fh to fh comes from the ratio of the mechanical energy of thermomass Eh to internal energy u 

h h h h hd d d

d d

E p u u

u u





  . (25) 

Eh consists of a potential part and a kinetic part. In ordinary cases, the potential part corresponding to the internal energy is dominant. The kinetic 

part should be considered in extreme conditions such as high frequency or heating with huge power rate, when the temperature profile is not enough 

to characterize the transport process. Equation (24) indicates that Fh, with units of N·m-3, is the dissipative force per unit volume, i.e. the friction 

force per unit volume. Equation (23) gives a semi-positive definite expression and agrees with the solid curve in Fig. 1. 

 In EIT, the generalized force in the expression of the generalized entropy production is [13] 

1

2 t






 
 



q
X . (26) 

where  is the non-equilibrium temperature, which reduces to T when high order terms are negligible. If the relaxation time  is selected as Eq. 

(22a), the generalized force appears as 

 2
h h

h2 2 3 2 3 2

1 1

2 2

                                

h

V

T q c
p

T C T t C T t C T



   

   
       

  

u
X f

. (27) 

Hence the generalized force in EIT is actually the friction force in the thermomass model. The first term on the right-hand side of Eq. (26) 
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represents the driving force, and the second term means the inertia effect. If the partial differential operator in Eq. (26) is substituted by the material 

time derivative [35], equation (22) reduces to Eq. (16) exactly. 

In CIT, the thermodynamic force in Eq. (2) is called “driving force”, which is the cause of flux [5, 8]. From the viewpoint of the thermomass 

theory, this force is a friction (dissipative) force, with the same units to the body force in continuum mechanics. Hence, the reason for the invalidity 

of traditional expression of Eq. (2) in extreme conditions is because it is the friction force rather than the driving force that determines the dissipation 

or irreversibility of the transport processes. 

 

5. Conclusion 

(a) The momentum balance equation (Eq. (16)) of heat conduction based on the thermomass model is the balance of the driving force, inertia 

force and resistance force. The driving force balanced with the resistance just corresponds to the Fourier’s law of heat conduction. Since entropy 

production represents the irreversibility of transport processes, the expression of entropy production should be the product of the friction force, 

rather than the driving force, and the velocity divided by temperature. This general definition of entropy production is applicable not only to the 

Fourier heat conduction but also to non-Fourier phenomena, such as heat waves and nanoscale heat conduction with superhigh heat flux. 

(b) The analyses based on the themomass theory can be extended to other transport processes, such as mass diffusion, electrical conduction and 

momentum transport processes. The physical essence of the linear transport relations is the balance between the driving forces and friction forces 

with the inertia force ignored. The general expression of entropy production for irreversible processes is the product of the friction forces and drift 

velocities, divided by the temperature. The decomposition of forces and fluxes is no longer arbitrary with this physical identification. The general 

expression is especially necessary for nonlinear transport processes (e.g. heat waves, anomalous diffusion) induced by the inertia effects, while the 

classical expression cannot keep semi-positive definite in these cases. 

(c) The general expression of entropy production based on the thermomass theory agrees with that based on EIT, though from different 

frameworks of thermophysics. The EIT characterizes the irreversible systems with additional flux variables, i.e. the drift velocities multiplied by 

the density of extensive properties. It is reasonable since the velocities are actually independent variables in dynamical systems. For the thermomass 

model, however, the inertia force is taken into account in the conservation equation. The consistency of both theories will deepen the understanding 

of irreversible thermodynamics. 
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